

www.ineeji.com www.ineeji.jp

Company & Service Introduction Material

V13.2 2023. 05. 18.

KOREA HQ

14F, 8, Seongnam-daero 331beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea +82 31 8022 7534

KOREA HQ

55F, 40, Munhyeongeumyung-ro, Nam-gu, Busan +82 31 8022 7534

JAPAN OFFICE

Kasumigaseki Building, 5階, 3-chōme-2-5 Kasumigaseki, Chiyoda City, Tokyo 100-6001, Japan +81 3 5501 2847 Written by

Marketing Team

Date of Issue

18. MAY. 2023.

The World's Accurate Al Prediction Service

Providing Company

INEEJI Provides The World's Most Accurate Al Prediction Service <u>www.ineeji.com</u> <u>www.ineeji.jp</u>

EMPOWERING EXPERTISE

NEEJI

The Smart Choice for Cost Saving

The company providing Process Optimization AI prediction solution, INEEJI

CEO	Jaesik Choi	Address	KOREA HQ BUSAN OFFICE JAPAN OFFICE	14F, 8, Seongnam-daero 331beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 55F, 40, Munheyon-geumyung-ro, Nam-gu, Busan Kasumigaseki Building, 5階, 3-chōme-2-5 Kasumigaseki, Chiyoda City, Tokyo 100-6001, Japan
Employees	41 employees (R&D 29 employees, 1Q/2023)	Contact	KOREA HQ JAPAN OFFICE	+82-31-8022-7534 +81-3-5501-2847
Services	AI process optimization, Quality prediction, Diagnosis and maintenance	Website	<u>www.Ineeji.com</u> <u>www.Ineeji.jp</u>	
Partners	POSCO, Samsung, SK Picglobal, SK energy, GS chem, HYUNDAI Steel, Hankook Steel & Mill, SeAH Besteel, DIG airgas, GS EPS, SK chem, Dongwon systems, SUNGSHIN cement, SK gas, LG Energy Solution LG chem, Korea East-West Power Co., KG Steel, Dongguk Steel, Korea South Power Co., Dongwon, Ssangyong, Bucheon-si, etc.	E-mail	ineeji@ineeji.con sales@ineeji.com marketing@ineej recruit@ineeji.co	n 1 i.com m

CEO

Over 20 Yrs Global leader in explainable AI researcher / World-Class XAI Expert

INEEJI Co., Ltd

KAIST

UNIST

U.S Lawrence Berkeley National Laboratory U.S University of Illinois at Urbana-Champaign Seoul National University

Ministry of Trade, Industry and Energy Korean Institute of Information Scientists and Engineers Presidential 4th Industrial Revolution Committee SAMSUNG Electronic Future Technology Korean Ministry of Science and ICT

2022 Korea Al Startup Korea East-West Power Prime Minister's Commendation Smart Blast Furnace POSCO UNIST [5% of UNIST faculty members] International Digital Curling Tournament CEO (2019-Present) Associate Professor, Al Associate Professor, Computer (2013-2019) Adjunct Professor (2013-2019) MS-PhD, Computer Science (2012) BS, Computer Engineering (2004)

Committee, Industrial Digital Transformation (2023) Vice President of International Relations (2023) Subcommittee, AI department (2020-2021) Advisor (2019-Present) Director, Explainable AI Center (2017-Present) Named in '2022 Korea AI Startup 100' List (2022) Grand Prize, AI Competition (2020) Award (2019) Selection (2019) Smart Innovation Award (2018) Special Professor (2018) Winner (2017/2018)

EMPOWERING EXPERTISE

INEEUI

World Class eXplainable AI(XAI) Prediction Technology Leading the XAI field expert, CEO & CTO

KDD2020 Tutorial on

Interpreting and Explaining Deep Neural Networks: A Perspective on Time Series Data

* Due to COVID-19, the tutorials will be delivered virtually this year.

Time	Tutor	Detail				
50 min		Overview of InterpretingDeep Neural Networks				
50 min	Jaesik Choi (KAIST)	Interpreting Inside of Deep Neural Networks				
50 min		Explaining TimeSeries Data				

Tutorial outline

"Global Artificial Intelligence Forum" Under the theme of "AI of a New Era", AI Future Development Direction and Insight Sharing

World Class eXplainable AI(XAI) Prediction Technology World's leading AI expert, CEO & CTO

INEEII, Korea's representative AI startup recognized by **KOFST(The** Korean Federation of Science and Technology Societies)

World Class eXplainable AI(XAI) Prediction Technology eXplainable AI(XAI) & Prediction Pay rs published in Global Academic Conference

World Class eXplainable AI(XAI) Prediction Technology Building the world's highest level AI technology collaboration system

World Class eXplainable AI(XAI) Prediction Technology Technology Patent Application

Intellectual Property Name	Applicant for intellectual property rights	Applicant country	Application/ Registration Number	Application/R egistration	Remarks
Extraction methods and devices of Deep learning internal data	UNIST/INEEJI	РСТ	KR2019011184	Application	EU
Data prediction methods and devices	UNIST/INEEJI	KOR	10-2020-0110650	Application	
Context information extraction method and device	UNIST/INEEJI	KOR	10-2019-0153388	Application	
Methods and Apparatus for Extracting Data in Deep Neural Networks	UNIST/INEEJI	USA	16/642,579	Application	EU patent pending
Artificial intelligence device for predicting and controlling time series data based on automatic learning	INEEJI	KOR	10-2020-0046317	Application	
Artificial intelligence device for predicting and controlling time series data based on automatic learning	INEEJI	РСТ	KR2021020067	Application	USA, JAP, EU
Deep learning-based thermal power plant re-heater tube leakage detection method and device	IST/East-West Power (INEEJI /Patent License)	KOR	10-2241650	Registration	
Method and apparatus for explaining artificial neural networks based on time series data	KAIST(License by Agreement)	KOR	10-2020-0161577	Application	Technology transfer contract in progress
A method for controlling an intersection signal and an apparatus for performing the same	INEEJI	KOR	10-2023-0011554	Application	
Electronic device for realizing a polymer quality prediction and control system and control method thereof	INEEJI	KOR	10-2023-0012294	Application	
INFINITE OPTIMAL SERIES™ trademark application	INEEJI	JAP	6672783/6670020	Registration	Class 9, Class 42
INFINITE OPTIMAL SERIES™ trademark application	INEEJI	JAP	40-2022-0144170-0144176	Application	Class 9, Class 42 *under registration review

9

INEEJI EMPOWERING EXPERTISE

About "eXplainable AI(XAI)"

- Why did it comes to this conclusion?
- How did it succeed?
- How did it failed?
- Can I trust the conclusion?
- How are you going to modify it?

INEEJI EMPOWERING EXPERTISE

- You can see why we came to that conclusion.
- You can see how it succeed.
- You can see why it failed.
- It is reliable in these case.
- We can figure out why it happened.

ineej

About "eXplainable AI(XAI)"

High accuracy

Accurate guidance

High reliability

Increase precision of model by checking the process of deriving results and finding errors of learning.

Provide accurate and detailed guidance through the process of deriving results. You can check intuitively with the results based on high reliability.

INEEJI EMPOWERING EXPERTISE

Think Smart, INFINITE OPTIMAL SERIES™

INFINITE OPTIMAL SERIES™ is

Prediction solution for ENERGY SAVING through process optimization of industrial processes (Oil/Chemical/Ferrous metal/Cement/Glass/Power generation/Semiconductor), which enables companies to realize ESG/SDGs management through energy reduction, productivity improvement, and quality improvement.

CHALLENGE

Optimization of industrial processes in the factory is challenging!

High heat, pressure, corrosion, etc. make it difficult to measure the internal reaction.

Lack of experienced site managers and high cost of data analysis experts

Original method of designed operation does not always guarantee an optimal operation. Need a different operation approach depending on changes in raw materials and production costs.

The Smart Choice for Energy Saving in industrial process INEEJI INFINITE OPTIMAL SERIESTM

14

The Smart Choice for Energy Saving in industrial process **INEEJI INFINITE OPTIMAL SERIES™ Predictive Solution**

High-Temperature response optimization

Efficiency and production prediction by monitoring the internal reaction temperature and amount of The energy required of large thermal reactors at a high temperature of 1.000 degrees or higher.

LĨ	F			
POWER PLANT	STEEL PLANT	FURNACE	CEMENT KILN FURNACE	GLASS MELTING FURNACE

Low-Temperature response optimization

Optimization of production and quality of production for medium/large chemical reactions at room temperature, including chemical, distillation, batch, and precision chemistry.

ROBOTICS

MAINTENANCE MANUFACTURING

SOLAR

PANEL

WIND

TURBINE

PLANT

PIPELINE

CONGESTIONS

PREDICTION

Facility process optimization POC process

Procedure for applying the INEEJI AI solution

POC (Proof of Concept)

EMPOWERING EXPERTISE

INEEU

16

Facility process optimization POC process

INEEJI AI Solution Configuration Diagram

Process operating data

Al Server SPEC OS: ubuntu v16 CPU: i7-12 GPU: G-FORCE RTX 3050 RAM: SAMSUNG DDR4-3200 16G X 2 SSD: M.2 NVMe 1TB HDD: 4TB

Operator screen

EMPOWERING EXPERTISE

INEEJI

EMPOWERING EXPERTISE

NEEJI

18

Business Road map Milestone & Sales Plan of INEEJI

PARTNERS

Customers with INEEJI INFINITE OPTIMAL SERIES™ Predictive Solutions

Beyond the clients' expectation INFINITE OPTIMAL SERIESTM verified at manufacturing site

[National Core Technology, World Economic Forum Lighthouse Factory]

POSCO Smart Blast Furnace

Korea East-West Power Boiler diagnosis

62h earlier detection than existing method

27.5h earlier detection for ventilation system stop

Construction of the second sec

Chemical products Production Optimization

2.1t/d Production Increase

Under 200+ operating conditions Less than 2% M/D/T polymer production forecast error

Annual fuel cost saved by \$50m (Total amount \$250m)

25% reduction

in furnace glaze temperature prediction error

Dangjin Thermal Power HQ No-failure Operation since Solution Introduction

(2021.03) Applied to Korea East-West Power's Dangjin thermal power plant No. 5-8

Annual sales increase Estimation by \$2M

Al-based chemical material production optimization

INFINITE OPTIMAL SERIES™ USE CASE INEEJÎ

Main Partners

HANKOOK Steel & Mill Co., Ltd

INEEJI Provides The World's Most Accurate Al Prediction Service www.ineeji.com www.ineeji.jp

ineej

High-temperature response optimization / Blast Furnace Efficiency/Production Prediction of Blast Furnace at High Temperature Above 1000°C

Annual fuel cost saved by \$500M / year (Total amount \$250m)

The INFINITE OPTIMAL SERIES[™] applied to the blast furnace in the steel-making process Realized 25% reduction in the molten metal temperature difference inside the blast furnace through accurate deep-learning optimal prediction. (Saving fuel costs by \$50 million annually)

High-temperature response optimization / Rotary Kiln Furnace Energy Cost Reduction Case of Rotary Kiln Furnace Process in Cement Manufacturing

ineej

Annual fuel cost saved by SINN/year (with a 10 Kiln factory) The INFINITE OPTIMAL SERIES[™] applied to the cement manufacturing firing process Through accurate and optimal prediction of the temperature inside kiln furnace and input time of the heating material. 3% improvement in productivity and annual fuel cost savings of \$ 1n million annually.

High-temperature response optimization / Electric Arc Furnace Energy Cost Reduction Case of Electric Arc Furnace Process in Steel Plant

ineej

Annual electricity cost saved by \$0.6M/year

The INFINITE OPTIMAL SERIES[™] applied to the electric furnace melting process predicts the optimum time for additional scrap loading accurately even under the condition of a small amount of learning data and provides guidance for the workers. Reducing electricity cost per unit by 2% and scrap metal bucket loading time by more than 3% compared to the existing process.

High-temperature response optimization / Heating Furnace

Energy Cost Reduction Case of Heating Furnace Process in Continuous Hot Dipped Galvanizing

Optimum temperature Prediction · C ontrol and Guidance

The INFINITE OPTIMAL SERIES[™] applied to the Heating furnace enhanced production quality and reduced LNG consumption by predicting and controlling the optimal temperature of all 8 sections of the Heating Furnace in Continuous Hot Dipped Galvanizing(CGL) process. In addition, worker fatigue is reduced by introducing process variable control operation.

High-temperature response optimization / Glass Melting Furnace Prediction on Optimal Energy Consumption of Glass Melting Furnace

[Optimization the Glass Melting Furnace]

The INFINITE OPTIMAL SERIES[™] applied to the melting furnace in the glass manufacturing process realized stabilization of production quality and optimization of energy saving in the glass melting furnace process by guiding the process operator to the optimal energy consumption prediction system to prevent abnormal operation of the melting

EMPOWERING EXPERTISE

INEEU

Low-temperature response optimization [INFINITE OPTIMAL PREDICT^M] - Oxidation Reaction Optimization

	AI GUI	DANC	e cost	SAVER		Learning				
	AI GUI	DANC	E COST	SAVER						
		AI GUIDANCE COST SAVER								
				ModelLearn	ing Period :2020-10	-08~2020-11-08				
Condition B	Condition C		Condition D		Condition F					
Price Information B	Price Information	tion C F	Price Information D Price Information E		Price Information F					
					Make	a prediction				
					Exce	l Download				
1 Result 2	Result 3	Result 4	Result 5	Result 6	Result 7	Result 8				
1.512	1.127	1.043	1.029	155.185	<u></u> 38.318	4.951				
	Condition B Price Information B	Condition B Condition C Price Information B Price Information Price Information B Information Price Information 1 Result 2 Result 3 1.512 1.127	Condition B Condition C C Price Information B Price Information C F 1 Result 2 Result 3 Result 4 1.512 1.127 1.043	Condition B Condition C Condition D Price Information B Price Information C Price Information D 1 Result 2 Result 3 Result 4 Result 5 1.512 1.127 1.043 1.029	Condition B Condition C Condition D Condition E Price Information B Price Information C Price Information D Price Information E 1 Result 2 Result 3 Result 4 Result 5 Result 6 1.512 1.127 1.043 1.029 155.185	Condition B Condition C Condition D Condition E Condition Price Information B Price Information C Price Information D Price Information E Price Information Image: State of the				

INFINITE OPTIMAL SERIES[™] applied to the oxidation reactor by automatically recommending and guiding the process operator to the optimal temperature and oxygen inside the chemical reactor. Increased daily production by 0.45% compared to the existing process, increased sales by about \$2M per year.

Low-temperature response optimization

Oxidation Reaction Optimization

INFINITE OPTIMAL SERIES™

based on the operating conditions and price information of the oxidation reactor, the production process guidance is automatically provided to optimize the AI based chemical production.

Low-temperature & High-temperature response optimization / Quality improvement and Product Stabilization

INFINITE OPTIMAL SERIES[™] applied to the POE process not only reduces worker's fatigue by providing AI-based overshoot and undershoot prediction and control guidance but also

Improving process quality &

Realizing product stabilization

*MI (Melt Index)

Low-temperature response optimization [INFINITE OPTIMAL CostSaver[™]]

INFINITE OPTIMAL SERIES[™] applied to the RDS(Residual Desulfurization) manufacturing process by predicting the quality prediction error accurately,

Realization of diesel production quality improvement

Prediction Error 70% down

 $(6.1^{\circ}C \rightarrow 1.9^{\circ}C)$

Intersection Signal Time Optimization and Visualization / Traffic congestion Prediction

Applied to habitual congestion section, Bumyung intersection in Bucheon-si, INFINITE OPTIMAL SERIES[™] predicted road congestion on the network and cameras in the intersection and distribution of signal time at intersections by learning a deep-learning model to predict collected traffic correlation data. from real-time traffic information (vehicle movement speed, traffic volume, the number of waiting vehicles) of sensors

Passing traffic on daily average (in July) $666_{M} \xrightarrow{4.72\% \text{ up}} 659 \text{ M}$ vehicl

Anomaly Detection

Demonstration of Detection Based on a Temperature Sensor

January 14, 2015 Korea East-West Power Unit 5 Reheater Tube Leak Detection

- Detect tube leakage by detecting abnormal local overheating of boiler tube temperature
- Detection up to 62 hours earlier than BTLD based leak detection

62hr

early detection

Anomaly Detection

Demonstration of Detection Based on a Temperature Sensor

January 14, 2015 Korea East-West Power Unit 5 Reheater Tube Leak Detection

• Detect tube leakage by detecting abnormal local overheating of boiler tube temperature

Detection

success

[Predicted result of tube leakage]

EMPOWERING EXPERTISE

NEEJI

INFINITE OPTIMAL SERIESTM THINK SMART

KOREA HQ

14F, 8, Seongnam-daero 331beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea +82 31 8022 7534

KOREA HQ

55F, 40, Munhyeongeumyung-ro, Nam-gu, Busan +82 31 8022 7534

JAPAN OFFICE

Kasumigaseki Building, 5階, 3-chōme-2-5 Kasumigaseki, Chiyoda City, Tokyo 100-6001, Japan +81 3 5501 2847

Email

ineeji@ineeji.com marketing@ineeji.com

SNS

 (\mathfrak{V})

 https://www.facebook.com/ineeji

 im

 https://www.instagram.com/ineeji/

 in

 https://www.linkedin.com/company/70986074

https://twitter.com/ineeji_official